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Color Scheme of Text

• Original contribution

• Future work
– Ongoing research

– Proposed research
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Combinatorial Optimization of Mat-Vec Multiplication

• Two main subtopics

• Serial matrix-vector multiplication
– Reducing redundant operations

– Dense relatively small matrices

• Parallel matrix-vector multiplication
– Minimization of communication volume

– Large, sparse matrices
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• Reducing redundant operations in building finite
element (FE) stiffness matrices
– Reuse optimized code when problem is rerun

Based on reference

element, generate code to

optimize construction of

local stiffness matrices

Can use optimized code

for every element in

domain

Motivation:

Optimization of Serial Mat-Vec Multiplication
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Related Work

• Finite element “Compilers” (FEniCS project)
– www.fenics.org

– FIAT (automates generations of FEs)

– FFC (variational forms -> code for evaluation)

• Following work by Kirby, et al., Texas Tech,
University of Chicago on FErari
– Optimization of FFC generated code to evaluate

finite element matrices

– Equivalent to optimizing matrix-vector product code
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Matrix-Vector Multiplication

where

Element 

dependent
Element 

independent

For 2D Laplace equation, we obtain following matrix-
vector product to determine entries in local

stiffness matrix
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Optimization Problem

Objective: Generate set of operations for
computing matrix-vector product with minimal
number of multiply-add pairs (MAPs)
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Possible Optimizations - Collinear Rows
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Possible Optimizations - Colinear Rows
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Possible Optimizations - Identical Rows
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Possible Optimizations - Partial Colinear Rows
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Possible Optimizations - Partial Collinear Rows
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Graph Model - Resulting Vector Entry Vertices

• Entries in resulting vector represented by
vertices in graph model
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Graph Model - Inner-Product Vertex and Edges

• Additional inner-product (IP) vertex

• Edges connect IP vertex to every other
vertex, representing inner-product operation
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Graph Model - Row Relationship Edges

• Operations resulting from relationships
between rows represented by edges between
corresponding vertices
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Graph Model - Edge Weights

• Edge weights are MAP costs for operations



17

Graph Model Solution

• Solution is minimum spanning tree (MST)
– Minimum subgraph

– Connected and spans vertices

– Acyclic

MST(5)GraphMatrix
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Graph Model Solution

• Prim’s algorithm to find MST (polynomial time)
• MST traversal yields operations to optimally

compute (for these relationships) matrix-vector
product

InstructionsMST TraversalMatrix
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Graph Model Results - 2D Laplace Equation

• Graph model shows significant improvement over
unoptimized algorithm

60% decrease
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Graph Model Results - 2D Laplace Equation

• Improved graph model shows significant
improvement over FErari

21% decrease
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Graph Model Results - 3D Laplace Equation

• Again graph model requires significantly fewer
MAPs than unoptimized algorithm

59% decrease
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Graph Model Results - 3D Laplace Equation

• Again graph model requires significantly fewer
MAPs than FErari

22% decrease
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Limitation of Graph Model

1

0

1 32
4 44 4

2 02
0 20 2

• Edges connect 2 vertices
• Can represent only binary row relationships
• Cannot exploit linear dependency of more than

two rows
• Thus, hypergraphs needed
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Hypergraph Model

• Same edges (2-vertex hyperedges) as graph model
• Additional higher cardinality hyperedges for more

complicated relationships
– Limiting to 3-vertex linear dependency hyperedges

for this talk



25

Hypergraph Model

• Extended Prim’s algorithm to include hyperedges
• Polynomial time algorithm
• Solution not necessarily a tree

– {IP,1,3,5}
– {IP,2,4,5}

• No guarantee of optimum solution
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Hypergraph Model Results - 2D Laplace Equation

• Hypergraph solution slightly better for some
orders but not significantly better

• Graph algorithm solution close to optimal?
– 3 Columns

– Binary relationships may be good enough
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Hypergraph Model Results - 3D Laplace Equation

• Hypergraph solution significantly better than
graph solution for many orders

19% additional

decrease
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Future Work: New Hypergraph Method(s)

• Greedy modified Prim’s algorithm yields
suboptimal solutions for hypergraphs

• Want improved method that yields better

(or optimal) solutions
–Improved solution

–Optimality of greedy solution

• First approach: integer programming method
–Express valid hypergraph solution more formally

–Exponential number of variables/constraints
discouraging

• New approach: formulate as vertex ordering
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Future Work: Vertex Ordering Method

• Order vertices
–Roughly represents order of calculation for entries

• For given ordering, can determine optimal
solution subhypergraph!
–Greedy algorithm of selecting cheapest available
hyperedge

–Fast

• Ordering is challenging part
–Traversal of greedy solution good starting point

–Local refinement on starting point

• Develop global ordering method
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Future Work: Hyperedge Detection/Construction

• Hyperedge detection/construction is bottleneck

• Currently brute force operation (nested loops)
–e.g. O(n3) calls to coplanar detection kernel for n rows

• Detection kernel: originally SVD, now hybrid

• Improvement over brute force method
–Better complexity than O(n3)
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Future Work: Hyperedge Pruning

• Hyperedge explosion
– Over 10 million hyperedges for FE matrices

– Hypergraphs too large to fit on one processor

• Most hyperedges won’t be in optimal solution

• Want to prune as many as possible

• For example, currently prune
– Hyperedge if weight greater or equal than number

of nonzeros for all involved vertices

– Coplanar (3 V) hyperedge if two of rows are
collinear

• Need additional pruning heuristics
– One possibility: use graph solution



32

Future Work: Miscellaneous

• Runtime of resulting operations
– Preliminary studies show slight improvement

– Not as good as MAP improvement

– More complete study necessary

• Better instruction ordering
– Currently do naive traversal of solution subgraph

– Can do something more clever/cache-friendly

– Solution is dependency graph
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Sparse Matrix Partitioning

• Work with Dr. Erik Boman (SNL)
- CSCAPES Institute

• Researched and developed two new
two-dimensional methods

• If successful, will be implemented as part of
new matrix partitioning suite in Zoltan
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Parallel Sparse Matrix-Vector Multiplication

• Partition matrix nonzeros
• Partition vectors
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Objective

• Ideally we minimize total run-time
• Settle for easier objective

– Work balanced
– Minimize total communication volume

• Can partition matrices in different ways
– 1-D
– 2-D

• Can model problem in different ways
– Graph
– Bipartite graph
– Hypergraph
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1-D Partitioning

• Each process
assigned nonzeros
for set of columns

1-D Column

• Each process
assigned nonzeros
for set of rows

1-D Row
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When 1-D Partitioning is Inadequate

n=12

nnz=34 (18,16)

volume = 9

“Arrowhead” matrix

• For any 1-D bisection of nxn arrowhead matrix:
– nnz = 3n-2
– Volume  (3/4)n

• O(k) volume partitioning possible
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2-D Partitioning

• More flexibility in partitioning

• No particular part for given row or column

• More general sets of nonzeros assigned parts

• Fine-grain hypergraph model
– Ultimate flexibility
– Assign each nz separately

• Corner symmetric partitioning method
• Graph model for symmetric 2-D partitioning
• Nested dissection symmetric partitioning method
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Fine-Grain Hypergraph Model

•Catalyurek and
Aykanat (2001)

•Nonzeros represented
by vertices in
hypergraph
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Fine-Grain Hypergraph Model

•Rows represented by
hyperedges
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Fine-Grain Hypergraph Model

•Columns
represented by
hyperedges
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Fine-Grain Hypergraph Model

•2n hyperedges
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Fine-Grain Hypergraph Model

• Partition vertices
into k equal sets

• For k=2
– Volume = number of

hyperedges cut

• Minimum volume
partitioning when
optimally solved

• Larger NP-hard
problem than 1-Dk=2, volume = cut = 2
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New 2-D Method: “Corner” Symmetric Partitioning

• Optimal partitioning of arrowhead
matrix suggests new partitioning method
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“Corner” Symmetric Partitioning

• 1-D parts reflected across diagonal
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“Corner” Symmetric Partitioning

• Take lower triangular portion of
matrix
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“Corner” Symmetric Partitioning

• 1-D (column) hypergraph partitioning
of lower triangular matrix
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“Corner” Symmetric Partitioning

• Reflect partitioning symmetrically
across diagonal
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“Corner” Symmetric Partitioning

• Optimal partitioning

Volume = 2
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Comparison of Methods -- Arrowhead Matrix

*optimal

2(k-1)Order n

• n = 40,000
• nnz = 119,998
• Communication volume for 3 methods
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Preliminary Results

• Symmetric matrices

• First 3 from Professor Rob Bisseling’s
(Utrecht University) Mondriaan paper

• Last from Sandia Xyce circuit simulation

• Hypergraph partitioning for all methods
– Zoltan with PaToH
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Preliminary Results: Communication Volume
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Future Work: Reordering

• Ordering not advantageous in 1D methods
– Same graphs/hypergraph models

• Corner method partitioning quality depends
greatly on ordering

–Ordering impacts off-diagonal nz partitioning

• Symmetric reordering to further reduce
communication

• Focus on bisection
–Recursive bisection for k>2
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Reordering (Bisection)

• Graph model G(V,E)
– Vector entries represented by vertices

– Off-diagonal nonzeros represented by edges

– Each vertex     assigned part     and

 position

•     “costs” 2 words of communication iff

•      “free” otherwise
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Reordering (Bisection)

•     “costs” 2 words if

vol=2 vol=4
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Reordering (Bisection)

• Ideally find optimal partitioning/ordering
– Very difficult combinatorial problem

• Instead we propose
– Fix ordering, partition

• Corner method

– Fix vertex partitioning, find optimal ordering

• Can iterate two steps

• Need to find optimal vertex ordering given
fixed vertex partitioning

–Divide graph into 3 categories of vertices
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Reordering (Bisection): Vertex Categories

• Interior vertices: not adjacent to any
vertex owned by different part
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Reordering (Bisection): Vertex Categories

• Boundary vertices: adjacent to at least one
vertex owned by different part
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Reordering (Bisection): Vertex Categories

• Bipartite graph obtained by
– Removing interior vertices

– Removing non-cut edges
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Reordering (Bisection): Vertex Categories

• Minimum vertex cover of bipartite graph
– Cover boundary vertices
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Reordering (Bisection): Vertex Categories

• Non-cover boundary vertices
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Reordering (Bisection): Vertex Categories

• 3 Categories
– Interior vertices

– Non-cover boundary vertices

– Cover boundary vertices
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Reordering (Bisection): Ordering Interior V

• Interior vertices can be given any position
with no affect on volume

– Since adjacent vertices have same part

– Position these first

•     “costs” if
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Reordering (Bisection): Ordering Other V

• Find ordering of remaining V such that
– Minimum set of vertices result in communication

– Equivalently, minimum set of vertices such that
for each edge in bipartite graph, vertex with
larger numbered position is contained in this set

– Minimum vertex cover gives us this set
• With cover vertices ordered last

• Order cover boundary vertices last

•     “costs” if
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Reordering (Bisection): Resulting Matrix

• Only cover boundary vertices “cost”
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Graph Model for Symmetric 2-D Partitioning

• Given symmetric matrix A

• Symmetric partition
– a(i,j) and a(j,i) assigned same partition

– Input and output vectors have same distribution

• Corresponding graph G(V,E)
– Vertices correspond to vector elements

– Edges correspond to off-diagonal nonzeros
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Graph Model for Symmetric 2-D Partitioning

• Corresponding graph G(V,E)
– Vertices correspond to vector elements

– Edges correspond to off-diagonal nonzeros
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Graph Model for Symmetric 2-D Partitioning

• Symmetric 2-D partitioning
– Partition both V and E

– Gives partitioning of both matrix and vectors
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Communication in Graph Model

• Communication is assigned to vertices

• Vertex incurs communication iff incident
edge is in different part

• Want small vertex separator -- S={V8}
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Nested Dissection Partitioning Method - Bisection

• Suppose A is symmetric
• Let G(V,E) be graph of A
• Find small, balanced separator S

– Yields vertex partitioning V = (V0,V1,S)

• Partition the edges
– E0 = {edges that touch a vertex in V0}
– E1 = {edges that touch a vertex in V1}
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Nested Dissection Partitioning Method - Bisection

• Vertices in S and corresponding edges
– Can be assigned to either partition
– Can use flexibility to maintain balance

• Communication Volume = 2*|S|
– Regardless of S partitioning
– |S| in each phase
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Nested Dissection Partitioning Method

• Recursive bisection to
partition into >2
partitions

• Use nested dissection!
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Preliminary Numerical Experiments

• Compared 3 methods
– 1-D hypergraph partitioning

– Fine-grain hypergraph partitioning

– Nested dissection partitioning

• Hypergraph partitioning for all methods
– Zoltan with PaToH

• Symmetric and nonsymmetric matrices
– Mostly from Prof. Rob Bisseling (Utrecht Univ.)

• k = 4, 16, 64 partitions
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Communication Volume - Symmetric Matrices
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Runtimes
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Nonsymmetric Matrices

• Given nonsymmetric matrix A

• Construct bipartite graph G’(R,C,E)
– R vertices correspond to rows, C vertices to columns

– E correspond to nonzeros

– Can be represented by symmetric adjacency matrix

• Apply nested dissection approach to G’
– Use same algorithm as for symmetric case

Bipartite graph
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Communication Volume - Nonsymmetric Matrices
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Messages Sent (or Received) per Process
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Summary of Nested Dissection Method Results

• New nested dissection 2-D algorithm
– Implemented using existing algorithms and software
– Quality better than 1-D, and similar to fine-grain

hypergraph method for many matrices
– Faster to compute than fine-grain hypergraph
– Fewer messages than fine-grain hypergraph
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Progress: Serial Matrix-Vector Multiplication (1)

Approximate % complete

• Improved hypergraph algorithm
– Develop vertex ordering algorithm
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Progress: Serial Matrix-Vector Multiplication (2)

Approximate % complete

• Hyperedge pruning
– Develop one or two more heuristics

– One based on MST graph solution
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Progress: Serial Matrix-Vector Multiplication (2)

Approximate % complete

• Hyperedge detection
– Need to improve O(n3) looping (for coplanar)

• Operation ordering
– More cache friendly ordering
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Progress: Sparse Matrix Partitioning (1)

Approximate % complete

• Corner reordering
– Implement proposed method

• Nested dissection approach
– Improve partitioning of separator vertices/edges
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Progress: Sparse Matrix Partitioning (2)

Approximate % complete

• Nonsymmetric matrices
– Corner method

– Improve nested dissection approach to nonsymmetric
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Progress: Sparse Matrix Partitioning (2)

Approximate % complete

• Other communication metrics
– Messages

• Numerical experiments
– Larger matrices
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